New MILP Modeling: Improved Conditional Cube Attacks on Keccak-Based Constructions

Ling Song, Jian Guo, Danping Shi, San Ling

4 Dec 2018 @ Brisbane, Australia

Outline

- 2 Conditional Cube Attacks
- In MILP Model for Searching Cubes

4 Main Results

Outline

- Keyed KECCAK Constructions
- Our Contributions
- 2 Conditional Cube Attacks
- 3 MILP Model for Searching Cubes
- Main Results

Keccak

- Permutation-based hash function
 - Designed by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
 - Selected as SHA-3 standard
 - Underlying permutation: KECCAK-p[1600, 24]
- KECCAK under keyed modes: KMAC, KECCAK-MAC
- Its relatives
 - Authenticated encrytion: KEYAK, KETJE
 - Pseudorandom function: KRAVATTE
 - Permutation: X00D00

KECCAK- $p[b, n_r]$ Permutation

- *b* bits: seen as a 5 × 5 array of $\frac{b}{25}$ -bit lanes, A[x, y]
- *n_r* rounds
- each round *R* consists of five steps:

 $R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$

- χ : S-box on each row
- π, ρ: change the position of state bits

http://www.iacr.org/authors/tikz/

KECCAK-*p* Round Function: θ

 θ step: adding two columns to the current bit

$$C[x] = A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus$$
$$A[x, 3] \oplus A[x, 4]$$
$$D[x] = C[x - 1] \oplus (C[x + 1] \lll 1)$$
$$A[x, y] = A[x, y] \oplus D[x]$$

http://keccak.noekeon.org/

- The Column Parity kernel
 - If $C[x] = 0, 0 \le x < 5$, then the state A is in the CP kernel.

KECCAK-*p* Round Function: ρ, π

 ρ step: lane level rotations, $A[x, y] = A[x, y] \ll r[x, y]$

http://keccak.noekeon.org/

 π step: permutation on lanes, A[y, 2 * x + 3 * y] = A[x, y]

Keccak-p Round Function: χ

 χ step: 5-bit S-boxes, nonlinear operation on rows

$$y_0 = x_0 + (x_1 + 1) \cdot x_2,$$

$$y_1 = x_1 + (x_2 + 1) \cdot x_3,$$

$$y_2 = x_2 + (x_3 + 1) \cdot x_4,$$

$$y_3 = x_3 + (x_4 + 1) \cdot x_0,$$

$$y_4 = x_4 + (x_0 + 1) \cdot x_1.$$

- Nonlinear term: product of two adjacent bits in a row.
- The algebraic degree of n rounds is 2^n .

Song et al.

Keccak: Keccak-p[1600, 24] + Sponge

sponge

- Sponge construction [BDPV11]
 - *b*-bit permutation *f*
 - Two parameters: bitrate r, capacity c, and b = r + c.
- Keccak-MAC
 - Take *K*||*M* as input

Keyed Keccak Constructions

KMAC

Key Recovery Attacks

Intuition: $deg(\chi) = 2$. Consider algebraic cryptanalsis, in paticular, cube attacks.

Key Recovery Attacks

Intuition: $deg(\chi) = 2$. Consider algebraic cryptanalsis, in paticular, cube attacks.

Contributions

- Mixed Integer Linear Programming models for searching two types of cube attacks
- \bullet Best key recovery attacks on round-reduced KMAC, $K\rm EYAK$ and larger versions of $K\rm ETJE$ so far
- Solve the open problem of "Full State Keyed Duplex (Sponge)"

Key Recovery Attacks

Intuition: $deg(\chi) = 2$. Consider algebraic cryptanalsis, in paticular, cube attacks.

Contributions

- Mixed Integer Linear Programming models for searching two types of cube attacks
- \bullet Best key recovery attacks on round-reduced KMAC, $K\rm EYAK$ and larger versions of $K\rm ETJE$ so far
- Solve the open problem of "Full State Keyed Duplex (Sponge)"

"Whether these attacks can still be extended to more rounds by exploiting full-state absorbing remains an open question". — the KEYAK designers

Outline

4 Main Results

Song et al.

Cube Attacks [DS09]

Higher Order Differential Cryptanalysis [Lai94]

• Given a Boolean polynomial $f(k_0, ..., k_{n-1}, v_0, ..., v_{m-1})$ and a monomial $t_l = v_{i_1}...v_{i_d}$, $l = \{v_{i_1}, ..., v_{i_d}\}$, f can be written as

$$f(k_0,...,k_{n-1},v_0,...,v_{m-1}) = t_l \cdot p_{S_l} + q$$

- q contains terms that are not divisible by t_l
- p_{S_I} is called the superpoly of I in f
- $v_{i_1}, ..., v_{i_d}$ are called cube variables. *d* is the dimension.
- The the cube sum is exactly

$$\sum_{v_{i_1},...,v_{i_d})\in C_l} f(k_0,...,k_{n-1},v_0,...,v_{m-1}) = p_{S_l}$$

- Cube attacks: p_{S_l} is a linear polynomial in key bits.
- Cube testers: distinguish p_{S_l} from a random function.

• If
$$deg(f) < d, p_{S_l} = 0$$

Conditional Cube Testers of Keccak [HWX+17]

Renamed conCube

conCube

- Linearize the first round.
- There exist *p* cube variables that are not multiplied with any cube variable even in the second round under certain *conditions*.

We classify two types of conditional cubes:

Type I conCube

- *p* = 1.
- Given such a cube with *d* = 2ⁿ⁻¹, *p*_{Si} = 0 for *n*-round KECCAK if the conditions are met.

Type II conCube

- p = d.
- Given such a cube with d = 2ⁿ⁻² + 1, p_{Si} = 0 for n-round KECCAK if the conditions are met.

ConCube on Keccak

If the conditions involve the key, the conditional cube can be used to recover the key.

ConCube on Keccak

If the conditions involve the key, the conditional cube can be used to recover the key.

How to find good cubes?

ConCube on Keccak

If the conditions involve the key, the conditional cube can be used to recover the key.

How to find good cubes?

Task of the MILP Model

• Find Type I (II) cubes with dimension $2^{n-1} (2^{n-2} + 1)$ where *n* is as large as possible; (attack more rounds).

On the number of conditions is minimized. (low complexity).

Outline

2 Conditional Cube Attacks

4) Main Results

Song et al.

Mixed Integer Linear Programming

• An MILP problem is of the form

 $\begin{array}{ll} \min \quad c^T x \\ Ax \geq b \\ x_i \geq 0 \\ x_i \in \mathbb{Z} \end{array}$

Solvers

• Gurobi, CPLEX, SCIP, ...

• Application to cryptanalysis since Mouha et al.'s pioneering work [MWGP11]

MILP Model of Searching Cubes

- Similar to modeling differential cryptanalysis
- Model the propagation of activeness through each step

$$\chi \circ \pi \circ \rho \circ \theta \circ \chi \circ \pi \circ \rho \circ \theta$$

• Modeling ρ, π is trivial.

MILP-based Cryptanalysis

- Optime variables which are mostly binary for the crypto problem.
- Identify links between the variables
- Generate all valid patterns for the variables
- Oescribe valid patterns with inequalities
- Solve the MILP problem

MILP-based Cryptanalysis

- Of the crypto problem.
- Identify links between the variables
- In the second second states and the second secon
- Oescribe valid patterns with inequalities
- Solve the MILP problem

Example: Modeling the first χ

1. Define Variables

Let a[x][y][z] be the state:

$$a \xrightarrow{\pi \circ \rho \circ \theta} \mathbf{b} \xrightarrow{\chi} \mathbf{c} \xrightarrow{\pi \circ \rho \circ \theta} \mathbf{d} \xrightarrow{\chi} e$$

A[x][y][z] = 1 if a[x][y][z] is active, *i.e.*, containing cube variables:

$$A \xrightarrow{\pi \circ \rho \circ \theta} \mathbf{B} \xrightarrow{\chi} \mathbf{C} \xrightarrow{\pi \circ \rho \circ \theta} \mathbf{D} \xrightarrow{\chi} E$$

V[x][y][z] = 1 indicates that bit b[x][y][z] is constrained to the value of H[x][y][z].

2. Identify Links

Propagation of variables through χ

Observation

- **1** Linearize χ by avoiding adjacent variables in the input.
- 3 Bit 1 (0) on the left (right) of the variable helps to restrict the diffusion of variables through χ , while an unknown constant diffuses the variable in an uncertain way.

2. Identify Links

Propagation of variables through χ

Observation

- **1** Linearize χ by avoiding adjacent variables in the input.
- Solution 3 Bit 1 (0) on the left (right) of the variable helps to restrict the diffusion of variables through χ , while an unknown constant diffuses the variable in an uncertain way.

2. Identify Links

Propagation of variables through χ

Observation

- **1** Linearize χ by avoiding adjacent variables in the input.
- 3 Bit 1 (0) on the left (right) of the variable helps to restrict the diffusion of variables through χ , while an unknown constant diffuses the variable in an uncertain way.

$$c[x] = b[x] + (b[x+1]+1) \cdot b[x+2]^{1}$$

$$b[x] \quad b[x+1] \quad b[x+2] \qquad c[x]$$

¹Omit coordinates [y][z].

Song et al.

$$c[x] = b[x] + (b[x+1]+1) \cdot b[x+2]^{1}$$

b[x]	b[x+1]	<i>b</i> [<i>x</i> +2]	<i>c</i> [<i>x</i>]
cst	cst	cst	cst

¹Omit coordinates [y][z].

Song et al.

$$c[x] = b[x] + (b[x+1]+1) \cdot b[x+2]^{1}$$

b[x]	b[x+1]	<i>b</i> [<i>x</i> +2]	<i>c</i> [<i>x</i>]
cst	cst	cst	cst
var	cst	*	var

¹Omit coordinates [y][z].

Song et al.

$$c[x] = b[x] + (b[x+1]+1) \cdot b[x+2]^{1}$$

b[x]	b[x+1]	<i>b</i> [<i>x</i> +2]	<i>c</i> [<i>x</i>]
cst	cst	cst	cst
var	cst	*	var
cst	cst	var	var (deg \leq 1)

¹Omit coordinates [y][z].

Song et al.

$$c[x] = b[x] + (b[x+1]+1) \cdot b[x+2]^{1}$$

b[x]	b[x+1]	<i>b</i> [<i>x</i> +2]	<i>c</i> [<i>x</i>]
cst	cst	cst	cst
var	cst	*	var
cst	cst	var	var (deg \leq 1)
cst	1	var	cst

¹Omit coordinates [y][z].

Song et al.

$$c[x] = b[x] + (b[x+1]+1) \cdot b[x+2]^{1}$$

b[x]	b[x+1]	<i>b</i> [<i>x</i> +2]	<i>c</i> [<i>x</i>]	
cst	cst cst		cst	
var	cst	*	var	
cst	cst	var	var (deg \leq 1)	
cst	1	var	cst	
÷	:	:	E	

¹Omit coordinates [y][z].

Song et al.

$$B[x] = \begin{cases} 0, & b[x] \text{ is a constant;} \\ 1, & b[x] \text{ is a var.} \end{cases} \quad V[x] = \begin{cases} 0, & \text{no condidtion on } b[x]; \\ 1, & b[x] \text{ is restricted to } 0/1. \end{cases}$$

$$B[x] = \begin{cases} 0, & b[x] \text{ is a constant;} \\ 1, & b[x] \text{ is a var.} \end{cases} \quad V[x] = \begin{cases} 0, & \text{no condidtion on } b[x]; \\ 1, & b[x] \text{ is restricted to } 0/1. \end{cases}$$

Table: Diffusion of variables through χ

B[x]	B[x+1]	B[x + 2]	V[x+1]	<i>V</i> [<i>x</i> +2]	H[x+1]	H[x+2]	C[x]
0	0	0	*	*	*	*	0
1	0	0	*	*	*	*	1
0	0	1	0	0	*	*	1
0	0	1	1	0	1	*	0
0	0	1	1	0	0	*	1
0	1	0	0	0	*	*	1
0	1	0	0	1	*	0	0
0	1	0	0	1	*	1	1
1	0	1	0	0	*	*	1
1	0	1	1	0	*	*	1

Modeling the First χ

4. Describe valid patterns with inequality

By generating the convex hull of the set of patterns [SHW+14], we get

$$\begin{split} -B[x] - B[x+1] &\ge -1 \\ -B[x] + C[x] &\ge 0 \\ -B[x+2] - V[x+2] &\ge -1 \\ -B[x+1] - V[x+1] &\ge -1 \\ -B[x] - B[x+1] - H[x+2] + C[x] &\ge -1 \\ B[x] - V[x+1] - H[x+1] - C[x] &\ge -2 \\ B[x] - V[x+2] + H[x+2] - C[x] &\ge -1 \\ B[x] + B[x+1] + B[x+2] - C[x] &\ge 0 \\ -B[x+1] - B[x+2] + V[x+1] + V[x+2] + C[x] &\ge 0 \\ -B[x+1] - B[x+2] + V[x+2] + H[x+1] + C[x] &\ge 0 \\ \end{split}$$

Modeling Other Steps

- Modeling the activeness of column sums in the first/second round
- Modeling χ in the second round
- \Rightarrow See the paper.

Modeling Other Steps

- Modeling the activeness of column sums in the first/second round
- Modeling χ in the second round
- \Rightarrow See the paper.

Property

The model contains no unnecessary conditions, hence could be able to find optimal conditional cubes.

Outline

- 2 Conditional Cube Attacks
- 3 MILP Model for Searching Cubes

Results of Key Recovery Attacks

- First analytical results on KMAC
- Improve the attack against Lake Keyak (128) from 6 to 8 rounds in the NR setting, and attack 9 rounds if the key size is 256 bits.
- Solve the FKD open problem

Target	K	С	Rounds	Time	Reference	Туре
KMAC128 12		256	7/24	2 ⁷⁶	this	conCubo
KMAC256	256	512	9/24	2 ¹⁴⁷	this	concube
Target	K	NR	Rounds	Time	Reference	Туре
	128	Yes	6/12	2 ³⁷	[DMP+15]	cube
Lako KEVAK	128	No	8/12	274	[HWX+17]	conCube
Lake KETAK	128	Yes	8/12	2 ^{71.01}	this	
	256	Yes	9/14	2 ^{137.05}	this	conCuba
River KEYAK	128	Yes	8/12	2 ⁷⁷	this	concube
FKD[1600]	128	No	9/-	2 ⁹⁰	this	

NR: nonce-respected

Song et al.

Improved attacks on Ketje and $\operatorname{Keccak}\text{-MAC}$

Target	K	Rounds	Т	М	Reference	Туре
KET IE Major	128	7/13	2 ⁸³	-	[LBD+17]	
IXEIJE Major	128	7/13	2 ^{71.24}	-	this	conCube
KETIE Minor	128	7/13	2 ⁸¹	-	[LBD+17]	concube
IXEIJE WIIIO	128	7/13	2 ^{73.03}	-	this	
	128	7/13	2 ¹¹⁵	2 ⁵⁰	[DMP+15]	$auxCube^\dagger$
ILEIJE JI VI	128	7/13	2 ⁹¹	-	this	conCube
		256/512	7/24	2 ⁷²	[HWX+17]	
KECCAR MAC	128	768	7/24	2 ⁷⁵	[I BD+17]	conCubo
TYPOCAK-WAC	120	1024	6/24	2 ^{58.3}		concube
		1024	6/24	2 ⁴⁰	this	

† auxCube: cube-attack-like cryptanalysis

Conclusion

- **1** MILP models for searching two types of cubes for KECCAK.
- First attacks on KMAC, and improved attacks on KEYAK and KETJE.
- Solve the FKD open problem.
- The security of Keccak-based constructions is far from being threatened.

Conclusion

- **1** MILP models for searching two types of cubes for KECCAK.
- First attacks on KMAC, and improved attacks on KEYAK and KETJE.
- Solve the FKD open problem.
- The security of Keccak-based constructions is far from being threatened.

Thank you for your attention!